Nonlinear Dendritic Coincidence Detection for Supervised Learning

نویسندگان

چکیده

Cortical pyramidal neurons have a complex dendritic anatomy, whose function is an active research field. In particular, the segregation between its soma and apical tree believed to play role in processing feed-forward sensory information top-down or feedback signals. this work, we use simple two-compartment model accounting for nonlinear interactions basal input streams show that standard unsupervised Hebbian learning rules compartment allow neuron align with target signal received by compartment. We process, termed coincidence detection, robust against strong distractions space demonstrate effectiveness linear classification task.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Learning for Anomalous Trajectory Detection

A novel learning framework is proposed for anomalous behaviour detection in a video surveillance scenario, so that a classifier which distinguishes between normal and anomalous behaviour patterns can be incrementally trained with the assistance of a human operator. We consider the behaviour of pedestrians in terms of motion trajectories, and parametrise these trajectories using the control poin...

متن کامل

Weakly Supervised Learning for Salient Object Detection

Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...

متن کامل

Collaborative Learning for Weakly Supervised Object Detection

Weakly supervised object detection has recently received much attention, since it only requires imagelevel labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this probl...

متن کامل

Semi-supervised Learning for Unknown Malware Detection

Malware is any kind of computer software potentially harmful to both computers and networks. The amount of malware is increasing every year and poses a serious global security threat. Signature-based detection is the most widely used commercial antivirus method, however, it consistently fails to detect new malware. Supervised machine-learning models have been used to solve this issue, but the u...

متن کامل

A dendritic model of coincidence detection in the avian brainstem

We have constructed a detailed biophysical model of coincidence detector neurons in the nucleus laminaris (auditory brainstem) which are purported to detect interaural time di!erences (ITDs). In the model, ITD coding is improved when the inputs from both ears are located on the bipolar dendrites and segregated, over having both inputs on the soma: the model behaves like the in vivo coincidence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Computational Neuroscience

سال: 2021

ISSN: ['1662-5188']

DOI: https://doi.org/10.3389/fncom.2021.718020